

Florian Fainelli

OpenWrt/LEDE: when two become
one

About Florian

● 2004: Bought a Linksys WRT54G
● 2006: Became an OpenWrt developer
● 2013: Joined Broadcom to work on Set-top Box

and Cable Modem Linux kernel, toolchain,
bootloader, root filesystem

● 2016: Joined the LEDE team...
● … while remaining in OpenWrt

Summary

● Introduction to OpenWrt and LEDE
● Design, features and examples
● OpenWrt/LEDE reunification status

Introduction to OpenWrt/LEDE

What are OpenWrt and LEDE?

● Build systems
● Linux distributions
● Communities:

– Wiki, forums, mailing-lists and git repositories

– Users, contributors, developers

OpenWrt and LEDE in a nutshell

● Insert graph

OpenWrt/LEDE
User space
components

Open source
Software:

Http, git, svn, files

Kernel image

Root
filesystem

Bootloader

Packages

OpenWrt/LEDE

Toolchain

Image
builder

SDK

Firmware
image(s)

Makefile
scripts

.config

Tools

Design goals

● Maintainability
– Working with latest technologies

– Frequent updates to solve security flaws

● Ubiquity
– Most off the shelf routers supported within weeks/months following public availability

– With LEDE: extend scope beyond traditional network devices

– Work with vendors to support OpenWrt/LEDE natively

● User empowerment
– It’s open source!

– Superior quality and control over vendor provided firmware

● Selected differentiation
– Provide a state of the art network device experience

– Turn-key solution to build real products

OpenWrt/LEDE in the landscape

buildroot

OpenWrt/LEDE

Yocto/OE

Number of
components/packages

Complexity

Low

Core
packages Package feeds

1 50 100 1000+

Medium

 High

Time line

2003 2006 2007 2008 2009 2010 2011 2013 2014 2015 2016

OpenWrt

LEDE

W
hite

ru
ss

ian
 0.

9

Kamika
ze

 7.06/0
7/09

Kamika
ze

 8.09

Kamika
ze

 8.09.1

Kamika
ze

 8.
09.2

Back
fire

 10.03

Back
fire

 10.03.1

Attit
ude

 adju
stm

ent 1
2.09

2017

Barri
er B

re
ake

r 1
4.0

7

Chaos C
alm

er 1
5.05

Chaos C
alm

er 1
5.05.1

LE
DE 17.0

1.0

2017

Desig
nated D

riv
er 1

6?

buildroot

Forks/reboot points
??

A word or two about router security

● Home routers are a great attack targets
– Use vendor SDKs, old software, with custom NIH

software

– Millions of vulnerable devices out there running
Linux

Design, features and examples

Build system

● Written in GNU Makefile
● Produces *.ipk files for software packages and kernel modules
● Abstracts autotools, cmake, bare-Makefile, libtool
● Make menuconfig based user interface
● Dependencies resolution and configuration validation
● Partial rebuild of everything (packages, toolchain, kernel)
● Supports building for different targets within the same source

tree
● Parallel whenever possible

Why not use buildroot or Yocto?

● Buildroot
– Does not support packages

– But was a great basis to work from!

● Yocto/OE
– Too slow, too complex

Menuconfig based interface

Toolchain & kernel

● Toolchain
– Internal build (default)

– External (crosstool-ng, custom…)

– Supports glibc, uClibc-ng and musl-libc

● Kernel
– Vanilla kernel + OpenWrt/LEDE patches + platform

specific patches

– External kernel: directory or git repository

Package makefile
include $(TOPDIR)/rules.mk

PKG_NAME:=jsonfilter

PKG_RELEASE:=1

PKG_SOURCE_PROTO:=git

PKG_SOURCE_URL=$(LEDE_GIT)/project/jsonpath.git

PKG_SOURCE_DATE:=2016-07-02

PKG_SOURCE_VERSION:=dea067ad67d977c247c300c06676a06adf21e0c7

PKG_MIRROR_HASH:=6c0e30da3f0c82527f9b5285d7c6ae61406732f2b0543b93131fe115ffc2987a

CMAKE_INSTALL:=1

PKG_MAINTAINER:=Jo-Philipp Wich <jo@mein.io>

PKG_LICENSE:=ISC

include $(INCLUDE_DIR)/package.mk

include $(INCLUDE_DIR)/cmake.mk

define Package/jsonfilter

 SECTION:=base

 CATEGORY:=Base system

 DEPENDS:=+libubox +libjson-c

 TITLE:=OpenWrt JSON filter utility

 URL:=http://git.openwrt.org/?p=project/jsonpath.git

endef

define Package/jsonfilter/install

 $(INSTALL_DIR) $(1)/usr/bin

 $(INSTALL_BIN) $(PKG_INSTALL_DIR)/usr/bin/jsonpath $(1)/usr/bin/jsonfilter

endef

$(eval $(call BuildPackage,jsonfilter))

● Define name, revision
● Git URL, git commit, date
● Distribution metadata
● Include cmake macros
● Define package

metadata
(dependencies, location
in menuconfig)

● How to create the
package

● Add to the build system

Example work flow

● Clean, build and install jsonfilter into rootfs:

make package/jsonfilter/{clean,compile,install}

● Force ethtool selection and download sources:

CONFIG_PACKAGE_ethtool=m make
package/ethtool/download

● Manage package patches with quilt:

make package/ethtool/prepare QUILT=1

cd build_dir/*/*/ethtool-*/

quilt push/pop/delete/add

Platform layer

Generic
Kernel configuration
Patches
Base-files

Profile harddisk

Sub-target

Sub-target
Kernel config
Base-files
ABI/Endian

Profile NAND
Package selection
Firmware image

Platform C

Platform B

Platform A
Kernel configuration
Patches
Base-files
Package selection

Platform definition
include $(TOPDIR)/rules.mk

ARCH:=arm

BOARD:=realview

BOARDNAME:=ARM Ltd. Realview board (qemu)

FEATURES:=fpu ramdisk

CPU_TYPE:=mpcore

CPU_SUBTYPE:=vfp

KERNEL_PATCHVER:=3.18

DEVICE_TYPE:=developerboard

include $(INCLUDE_DIR)/target.mk

define Target/Description

Build images for ARM Ltd. Realview boards to be run with qemu

endef

KERNELNAME:=zImage

$(eval $(call BuildTarget))

● Include macros
● Define architecture

– Features

– CPU type (ABI, family)

● Kernel version

● Default package selection

● Distribution (menuconfig) presentation

● Indicate what kernel image(s) to build
● Add to build system

Kernel example work flow

● Build kernel modules
make target/linux/compile

● Build kernel image and firmware
make target/linux/install

● Manage kernel patches with quilt
make target/linux/prepare QUILT=1

cd build_dir/target*/linux*/linux-x.y/

quilt push/pop/add/delete

● Switching between environments
./scripts/env/new arm-platform

./scripts/env/switch arm-platform

make -j42

./scripts/env/switch mips-platform

Even kernel modules are packages!

● Kernel package name

● Kconfig option to enable

● Dependencies

● File to install

● Insmod loading hints

● Add to build system

define KernelPackage/tg3

 TITLE:=Broadcom Tigon3 Gigabit Ethernet

 KCONFIG:=CONFIG_TIGON3

 DEPENDS:=+!TARGET_brcm47xx:kmod-libphy
+kmod-hwmon-core +kmod-ptp

 SUBMENU:=$(NETWORK_DEVICES_MENU)

 FILES:=$
(LINUX_DIR)/drivers/net/ethernet/broadcom/tg3
.ko

 AUTOLOAD:=$(call AutoLoad,19,tg3,1)

endef

define KernelPackage/tg3/description

Kernel modules for Broadcom Tigon3 Gigabit
Ethernet adapters

endef

$(eval $(call KernelPackage,tg3))

Feeds

● Locations to package recipes
src-git packages https://git.lede-project.org/feed/packages.git

src-link custom /usr/src/openwrt/custom-feed

● Search, install and update additional packages
scripts/feeds update packages

scripts/feeds search “snmp”

scripts/feeds/install snmpd

Development and deployment

Packages

Image
Builder

Firmware
image(s)Kernel image

Recipes

Tools

Open source
Software:

Http, git, svn, files

SDK

Toolchain

Recipes

Tools

Packages

Custom user-space, why?

● Modern systems require coordination between
heterogeneous and discrete components

● User interfaces (CLI, web, GUI) change system
configuration

● Networking devices are incredibly more
complex (tunnels, provisioning etc.)

● Requirement for a proven, solid and consistent
update mechanism

OpenWrt/LEDE software stack

ubus
Socket-based IPC bus
ACLs
Export methods & signals
Binary & JSON data format

netifd
Event driven networking
IPv4/v6 configuration
Tunnels, VLAN, Wi-Fi
Protocol handling

procd
Process monitoring
Jailing
Hotplug, watchdog, syslog
Init scripts support

uci
Configuration storage
C & LUA bindings
Commit & rollback

libubox
Event loop
Utility library
Socket abstraction
Common data structures

LuCI
Web interface
Supports plugins/modules
JSON-RPC
Ubus export

System upgrades and failsafe

● System upgrades work consistently across devices:
– Independent of the boot medium (SPI, NAND, eMMC)

– Platform layer provides how to identify firmware image and where to flash
kernel and root filesystem (partitions, mangling)

– Scripts freeze system, preserve configuration files, and pivot_root to /tmp

– Reboot into new version!

● Overlay FS allows marking the base system as read-only
– But still allow read/write partition(s) for installable packages

– Avoids wiping your entire system by accident

● Failsafe allows recovery of devices using device-specific buttons
– Provides a recovery mechanism in case configuration is botched

Networking today

Ethernet 3G/4G xDSL (euro)DOCSIS

DHCP RA + DHCPv6 IP(6)CP

6rd DS-Lite MAP-E MAP-T 464XLAT

Configure only the minimum

3G/4G
config interface wan

option ifname wwan
option pincode 1234
option apn #apn#

Ethernet
config interface wan

option ifname eth1
option proto dhcp

config interface wan6
option ifname eth1
option proto dhcpv6 PPPoX

config interface wan
option ifname eth1
option proto pppoe
option username john
option password doe

Wi-Fi
config wifi-iface
 option device radio0
 option mode ap
 option encryption psk-mixed
 option key ...
 option ssid ELC
 option network lan

Ethernet
config interface lan
 option ifname eth0
 option type bridge
 option proto static
 option ipaddr 192.168.1.1
 option netmask 255.255.255.0

And let netifd do the magic

Protocol handlers
DHCP, DHCPv6
PPP

netifd
Orchestration
Event generation
L2/L3/L4 stacking

Physical devices
Ethernet
xDSL
Wi-Fi
3G/4G Modems

firewall3
Netfilter/nftables frontend

DNSmasq
DHCP server
DNS cache
DNSseq

Network aware services
SMB
UPnP/DNLA
Dynamic DNS client

Protocol clients
PPP
DHCP client
DHCPv6 client

Build-time security features

● Full/partial RelRO (configurable)
● Format-security checking (-Werror=format-

security)
● Source fortification (-D_FORTIFY_SOURCE)
● Stack-smashing protector (user & kernel)
● Packages (*.ipk) are signed

Run-time security features

● Jails through procd to restrict filesystem access:
procd_add_jail dnsmasq ubus log

procd_add_jail_mount $CONFIGFILE $TRUSTANCHORSFILE $HOSTFILE /etc/passwd
/etc/group /etc/TZ /dev/null /dev/urandom $dnsmasqconffile $dnsmasqconfdir
$resolvfile $dhcpscript /etc/hosts /etc/ethers $EXTRA_MOUNT

procd_add_jail_mount_rw /var/run/dnsmasq/ $leasefile

● Flexible seccomp definitions to white list system calls:
procd_set_param seccomp /etc/seccomp/mdns.json

{

“whitelist”: [
“read”
“write”
..
“brk”

}

And many more!

● Has existing ARM, MIPS and x86 targets that
run in QEMU

● Packages with separate debug info
● Ex/inclusion of patented/specifically licensed

packages
● Local package mirror, alternate download

directory (corporate/development environments)
● Default IP, init-scripts, banner customization

Areas of improvements

● More continuous testing
– Harder because of the wide variety of hardware

– Leverage community and provide clear reporting guidelines

● Send more patches upstream
– About 170 patches against Linux 4.9!

– Migrate Qualcomm/Atheros AR71xx towards Device Tree (ath79)

● Opt-in security updates
● Documentation

– Wiki

– Table of hardware

– Recommended, best supported, ranking of models

Conclusions

● It works great on your router, but equally well
anywhere else!

● Fast, versatile, and flexible
● Turn-key user-space solution for products…
● … that you can ignore for development only
● Extremely active communities

OpenWrt/LEDE reunification status

What happened?

● On March 5th 2016, a group of OpenWrt
developers announced the formation of LEDE

● Two types of reaction:
– Most people immediately welcomed LEDE and

switched to it

– A smaller group did not acknowledge the problem,
and a flurry of emails ensued

● But essentially, it did signal there was a problem
to be fixed with OpenWrt

Why LEDE?

● More transparency
– All decisions made public
– Give equal decisions rights to all project members

– Establish clear processes and guidelines to operate the project (conflicts, external
communication, release decisions..)

● Less centralization
– Do not rely on single person owned infrastructure (DNS, servers, repositories…)

– Freedom to move code and services based on newer requirements (CI, capacity etc.)

● Predictability
– Make frequent releases

– Leverage community testing
– Easier integration process from contributor to developer

Meanwhile in OpenWrt

● Surprise,
●

●

Where are we today?

● Reunification terms:
– LEDE code base to be used moving forward

– OpenWrt team given LEDE repository access

– Discussions on whether OpenWrt should stick as a
name (trademark, larger popularity...)

● But right now, it’s a stalled discussion...

What next?

● Release 17.01.0
– So we can focus energy again on bringing the two projects together

again

– We critically need open source, recent and better software for our
routers, users should have control and freedom!

● Meet, discuss and agree
– In person
– More frequently

– On the the reunification terms

● And move forward together from there
http://lists.infradead.org/pipermail/lede-adm/2017-February/000380.html

http://lists.infradead.org/pipermail/lede-adm/2017-February/000380.html

References

● Websites

● Mailing-lists

● IRC

http://lede-project.org

http://openwrt.org

lede-dev@lists.infradead.org

openwrt-devel@lists.openwrt.org

#lede-dev @ freenode

#openwrt @ freenode

http://lede-project.org/
http://openwrt.org/
mailto:lede-dev@lists.infradead.org
mailto:openwrt-devel@lists.openwrt.org

Questions!

Florian Fainelli
f.fainelli@gmail.com

Slides under CC-by-SA 3.0

mailto:f.fainelli@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

