Linux Socket编程(不限Linux)


请尊重原创版权,转载注明出处。

    我们深谙信息交流的价值,那网络中进程之间如何通信, 如我们每天打开浏览器浏览网页时,浏览器的进程怎么与web服务器通信的?当你用QQ聊天时, QQ进程怎么与服务器或你好友所在的QQ进程通信? 这些都得靠socket?那什么是socket?socket的类型有哪些?还有socket的基本函数,这些都是本文想介绍的

网络中进程之间如何通信?

    本地的进程间通信(IPC)有很多种方式,但可以总结为下面4类:

  • 消息传递(管道、FIFO、消息队列)
  • 同步(互斥量、条件变量、读写锁、文件和写记录锁、信号量)
  • 共享内存(匿名的和具名的)
  • 远程过程调用(Solaris门和Sun RPC)

    但这些都不是本文的主题!我们要讨论的是网络中进程之间如何通信? 首要解决的问题是如何唯一标识一个进程,否则通信无从谈起!在本地可以通过进程PID来唯一标识一个进程, 但是在网络中这是行不通的。其实TCP/IP协议族已经帮我们解决了这个问题,网络层的“ip地址”可以唯一标识网络中的主机, 而传输层的“协议+端口”可以唯一标识主机中的应用程序(进程)。这样利用三元组(ip地址,协议,端口) 就可以标识网络的进程了,网络中的进程通信就可以利用这个标志与其它进程进行交互。

    使用TCP/IP协议的应用程序通常采用应用编程接口:UNIX BSD的套接字(socket) 和UNIX System V的TLI(已经被淘汰),来实现网络进程之间的通信。就目前而言,几乎所有的 应用程序都是采用socket,而现在又是网络时代,网络中进程通信是无处不在,这就是我为什么说“一切皆socket”。

什么是Socket?

    上面我们已经知道网络中的进程是通过socket来通信的,那什么是socket呢? socket起源于Unix,而Unix/Linux基本哲学之一就是“一切皆文件”,都可以用“打开open –> 读写write/read –> 关闭close”模式来操作。我的理解就是Socket就是该模式的一个实现,socket即是一种特殊的文件, 一些socket函数就是对其进行的操作(读/写IO、打开、关闭),这些函数我们在后面进行介绍。

socket一词的起源

在组网领域的首次使用是在1970年2月12日发布的文献IETF RFC33中发现的, 撰写者为Stephen Carr、Steve Crocker和Vint Cerf。根据美国计算机历史博物馆的记载,Croker写道: “命名空间的元素都可称为套接字接口。一个套接字接口构成一个连接的一端,而一个连接可完全由一对套接字接口规定。 ”计算机历史博物馆补充道:“这比BSD的套接字接口定义早了大约12年。”

socket的基本操作

    既然socket是“open—write/read—close”模式的一种实现, 那么socket就提供了这些操作对应的函数接口。下面以TCP为例,介绍几个基本的socket接口函数。

socket()函数

int socket(int domain, int type, int protocol);

    socket函数对应于普通文件的打开操作。普通文件的打开操作返回一个文件描述字, 而socket()用于创建一个socket描述符(socket descriptor),它唯一标识一个socket。 这个socket描述字跟文件描述字一样,后续的操作都有用到它,把它作为参数,通过它来进行一些读写操作。

    正如可以给fopen的传入不同参数值,以打开不同的文件。创建socket的时候, 也可以指定不同的参数创建不同的socket描述符,socket函数的三个参数分别为:

  • domain:即协议域,又称为协议族(family)。常用的协议族有,AF_INET、AF_INET6、AF_LOCAL (或称AF_UNIX,Unix域socket)、AF_ROUTE等等。协议族决定了socket的地址类型,在通信中必须采用对应的地址, 如AF_INET决定了要用ipv4地址(32位的)与端口号(16位的)的组合、AF_UNIX决定了要用一个绝对路径名作为地址。
  • type:指定socket类型。常用的socket类型有,SOCK_STREAM、SOCK_DGRAM、SOCK_RAW、SOCK_PACKET、SOCK_SEQPACKET等等 (socket的类型有哪些?)。
  • protocol:故名思意,就是指定协议。常用的协议有,IPPROTO_TCP、IPPTOTO_UDP、IPPROTO_SCTP、IPPROTO_TIPC等, 它们分别对应TCP传输协议、UDP传输协议、STCP传输协议、TIPC传输协议(这个协议我将会单独开篇讨论!)。

注意:

    并不是上面的type和protocol可以随意组合的,如SOCK_STREAM不可以跟IPPROTO_UDP组合。当protocol为0时, 会自动选择type类型对应的默认协议。

    当我们调用socket创建一个socket时,返回的socket描述字它存在于协议族( address family,AF_XXX)空间中,但没有一个具体的地址。如果想要给它赋值一个地址,就必须调用bind()函数, 否则就当调用connect()、listen()时系统会自动随机分配一个端口。

bind()函数

    正如上面所说bind()函数把一个地址族中的特定地址赋给socket。 例如对应AF_INET、AF_INET6就是把一个ipv4或ipv6地址和端口号组合赋给socket。

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

函数的三个参数分别为:

  • sockfd:即socket描述字,它是通过socket()函数创建了,唯一标识一个socket。 bind()函数就是将给这个描述字绑定一个名字。
  • addr:一个const struct sockaddr *指针,指向要绑定给sockfd的协议地址。 这个地址结构根据地址创建socket时的地址协议族的不同而不同
  • addrlen:对应的是地址的长度。
addr ipv4对应的是:
struct sockaddr_in {
    sa_family_t    sin_family; /* address family: AF_INET */
    in_port_t      sin_port;   /* port in network byte order */
    struct in_addr sin_addr;   /* internet address */
};

/* Internet address. */
struct in_addr {
    uint32_t       s_addr;     /* address in network byte order */
};
ipv6对应的是: 
struct sockaddr_in6 { 
    sa_family_t     sin6_family;   /* AF_INET6 */ 
    in_port_t       sin6_port;     /* port number */ 
    uint32_t        sin6_flowinfo; /* IPv6 flow information */ 
    struct in6_addr sin6_addr;     /* IPv6 address */ 
    uint32_t        sin6_scope_id; /* Scope ID (new in 2.4) */ 
};

struct in6_addr { 
    unsigned char   s6_addr[16];   /* IPv6 address */ 
};
Unix域对应的是: 
#define UNIX_PATH_MAX    108

struct sockaddr_un { 
    sa_family_t sun_family;               /* AF_UNIX */ 
    char        sun_path[UNIX_PATH_MAX];  /* pathname */ 
};

    通常服务器在启动的时候都会绑定一个众所周知的地址(如ip地址+端口号), 用于提供服务,客户就可以通过它来接连服务器;而客户端就不用指定,有系统自动分配一个端口号和自身的ip地址组合。 这就是为什么通常服务器端在listen之前会调用bind(),而客户端就不会调用,而是在connect()时由系统随机生成一个。

网络字节序与主机字节序

主机字节序就是我们平常说的大端和小端模式:不同的CPU有不同的字节序类型, 这些字节序是指整数在内存中保存的顺序,这个叫做主机序。引用标准的Big-Endian和Little-Endian的定义如下:

a) Little-Endian就是低位字节排放在内存的低地址端,高位字节排放在内存的高地址端。

b) Big-Endian就是高位字节排放在内存的低地址端,低位字节排放在内存的高地址端。

网络字节序:4个字节的32 bit值以下面的次序传输:首先是0~7bit,其次8~15bit,然后16~23bit, 最后是24~31bit。这种传输次序称作大端字节序。由于TCP/IP首部中所有的二进制整数在网络中传输时都要求以这种次序, 因此它又称作网络字节序。字节序,顾名思义字节的顺序,就是大于一个字节类型的数据在内存中的存放顺序, 一个字节的数据没有顺序的问题了。

所以:在将一个地址绑定到socket的时候,请先将主机字节序转换成为网络字节序, 而不要假定主机字节序跟网络字节序一样使用的是Big-Endian。由于这个问题曾引发过血案! 公司项目代码中由于存在这个问题,导致了很多莫名其妙的问题,所以请谨记对主机字节序不要做任何假定, 务必将其转化为网络字节序再赋给socket。

listen()、connect()函数

    如果作为一个服务器,在调用socket()、bind()之后就会调用listen()来监听这个socket, 如果客户端这时调用connect()发出连接请求,服务器端就会接收到这个请求。

int listen(int sockfd, int backlog);
int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

    listen函数的第一个参数即为要监听的socket描述字,第二个参数为相应socket可以 排队的最大连接个数。socket()函数创建的socket默认是一个主动类型的,listen函数将socket变为被动类型的, 等待客户的连接请求。

    connect函数的第一个参数即为客户端的socket描述字,第二参数为服务器的socket地址, 第三个参数为socket地址的长度。客户端通过调用connect函数来建立与TCP服务器的连接

accept()函数

    TCP服务器端依次调用socket()、bind()、listen()之后,就会监听指定的socket地址了。 TCP客户端依次调用socket()、connect()之后就想TCP服务器发送了一个连接请求。TCP服务器监听到这个请求之后, 就会调用accept()函数取接收请求,这样连接就建立好了。之后就可以开始网络I/O操作了,即类同于普通文件的读写I/O操作。

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

    accept函数的第一个参数为服务器的socket描述字,第二个参数为指向struct sockaddr *的指针, 用于返回客户端的协议地址,第三个参数为协议地址的长度。如果accpet成功,那么其返回值是由内核自动生成的 一个全新的描述字,代表与返回客户的TCP连接。

注意:

    accept的第一个参数为服务器的socket描述字,是服务器开始调用socket()函数生成的, 称为监听socket描述字;而accept函数返回的是已连接的socket描述字。一个服务器通常通常仅仅 只创建一个监听socket描述字,它在该服务器的生命周期内一直存在。内核为每个由服务器进程接受的 客户连接创建了一个已连接socket描述字,当服务器完成了对某个客户的服务,相应的已连接socket描述字就被关闭。

read()、write()等函数

    万事具备只欠东风,至此服务器与客户已经建立好连接了。 可以调用网络I/O进行读写操作了,即实现了网咯中不同进程之间的通信!网络I/O操作有下面几组:

  • read()/write()
  • recv()/send()
  • readv()/writev()
  • recvmsg()/sendmsg()
  • recvfrom()/sendto()
#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);

#include <sys/types.h>
#include <sys/socket.h>

ssize_t send(int sockfd, const void *buf, size_t len, int flags);
ssize_t recv(int sockfd, void *buf, size_t len, int flags);

ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
                      const struct sockaddr *dest_addr, socklen_t addrlen);
ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
                        struct sockaddr *src_addr, socklen_t *addrlen);

ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

    read函数是负责从fd中读取内容.当读成功时,read返回实际所读的字节数, 如果返回的值是0表示已经读到文件的结束了,小于0表示出现了错误。如果错误为EINTR说明读是由中断引起的, 如果是ECONNREST表示网络连接出了问题。

    write函数将buf中的nbytes字节内容写入文件描述符fd.成功时返回写的字节数。 失败时返回-1,并设置errno变量。 在网络程序中,当我们向套接字文件描述符写时有俩种可能。

  1. write的返回值大于0,表示写了部分或者是全部的数据。
  2. 返回的值小于0,此时出现了错误。我们要根据错误类型来处理。如果错误为EINTR表示在写的时候出现了 中断错误。如果为EPIPE表示网络连接出现了问题(对方已经关闭了连接)。

    其它的我就不一一介绍这几对I/O函数了,具体参见man文档或者baidu、Google, 下面的例子中将使用到send/recv。

close()函数

    在服务器与客户端建立连接之后,会进行一些读写操作,完成了读写操作就要关闭相应 的socket描述字,好比操作完打开的文件要调用fclose关闭打开的文件。

#include <unistd.h>
int close(int fd);

    close一个TCP socket的缺省行为时把该socket标记为以关闭,然后立即返回到调用进程。 该描述字不能再由调用进程使用,也就是说不能再作为read或write的第一个参数。

注意:

close操作只是使相应socket描述字的引用计数-1,只有当引用计数为0的时候,才会触发TCP客户端向服务器发送终止连接请求。

socket中TCP的三次握手建立连接详解

    我们知道tcp建立连接要进行“三次握手”,即交换三个分组。大致流程如下:

  • 客户端向服务器发送一个SYN J
  • 服务器向客户端响应一个SYN K,并对SYN J进行确认ACK J+1
  • 客户端再想服务器发一个确认ACK K+1

    只有就完了三次握手,但是这个三次握手发生在socket的那几个函数中呢?请看下图:

图1、socket中发送的TCP三次握手

图1、socket中发送的TCP三次握手

    从图中可以看出,当客户端调用connect时,触发了连接请求,向服务器发送了SYN J包, 这时connect进入阻塞状态;服务器监听到连接请求,即收到SYN J包,调用accept函数接收请求向客户端 发送SYN K ,ACK J+1,这时accept进入阻塞状态;客户端收到服务器的SYN K ,ACK J+1之后,这时connect返回, 并对SYN K进行确认;服务器收到ACK K+1时,accept返回,至此三次握手完毕,连接建立。

总结:客户端的connect在三次握手的第二个次返回,而服务器端的accept在三次握手的第三次返回。

socket中TCP的四次握手释放连接详解

    上面介绍了socket中TCP的三次握手建立过程,及其涉及的socket函数。 现在我们介绍socket中的四次握手释放连接的过程,请看下图:

图2、socket中发送的TCP四次握手

图2、socket中发送的TCP四次握手

图示过程如下:

  • 某个应用进程首先调用close主动关闭连接,这时TCP发送一个FIN M;
  • 另一端接收到FIN M之后,执行被动关闭,对这个FIN进行确认。它的接收也作为文件结束符传递给应用进程, 因为FIN的接收意味着应用进程在相应的连接上再也接收不到额外数据;
  • 一段时间之后,接收到文件结束符的应用进程调用close关闭它的socket。这导致它的TCP也发送一个FIN N;
  • 接收到这个FIN的源发送端TCP对它进行确认。

这样每个方向上都有一个FIN和ACK。

一个例子(实践一下)

    说了这么多了,动手实践一下。下面编写一个简单的服务器、客户端(使用TCP) ——服务器端一直监听本机的6666号端口,如果收到连接请求,将接收请求并接收客户端发来的消息; 客户端与服务器端建立连接并发送一条消息。

服务器端代码:

服务器端

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<errno.h>
#include<sys/types.h>
#include<sys/socket.h>
#include<netinet/in.h>

#define MAXLINE 4096

int main(int argc, char** argv)
{
    int    listenfd, connfd;
    struct sockaddr_in     servaddr;
    char    buff[4096];
    int     n;

    if( (listenfd = socket(AF_INET, SOCK_STREAM, 0)) == -1 ){
    printf("create socket error: %s(errno: %d)\n",strerror(errno),errno);
    exit(0);
    }

    memset(&servaddr, 0, sizeof(servaddr));
    servaddr.sin_family = AF_INET;
    servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
    servaddr.sin_port = htons(6666);

    if( bind(listenfd, (struct sockaddr*)&servaddr, sizeof(servaddr)) == -1){
    printf("bind socket error: %s(errno: %d)\n",strerror(errno),errno);
    exit(0);
    }

    if( listen(listenfd, 10) == -1){
    printf("listen socket error: %s(errno: %d)\n",strerror(errno),errno);
    exit(0);
    }

    printf("======waiting for client's request======\n");
    while(1){
    if( (connfd = accept(listenfd, (struct sockaddr*)NULL, NULL)) == -1){
        printf("accept socket error: %s(errno: %d)",strerror(errno),errno);
        continue;
    }
    n = recv(connfd, buff, MAXLINE, 0);
    buff[n] = '\0';
    printf("recv msg from client: %s\n", buff);
    close(connfd);
    }

    close(listenfd);
}

客户端代码:

客户端

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<errno.h>
#include<sys/types.h>
#include<sys/socket.h>
#include<netinet/in.h>

#define MAXLINE 4096

int main(int argc, char** argv)
{
    int    sockfd, n;
    char    recvline[4096], sendline[4096];
    struct sockaddr_in    servaddr;

    if( argc != 2){
    printf("usage: ./client <ipaddress>\n");
    exit(0);
    }

    if( (sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0){
    printf("create socket error: %s(errno: %d)\n", strerror(errno),errno);
    exit(0);
    }

    memset(&servaddr, 0, sizeof(servaddr));
    servaddr.sin_family = AF_INET;
    servaddr.sin_port = htons(6666);
    if( inet_pton(AF_INET, argv[1], &servaddr.sin_addr) <= 0){
    printf("inet_pton error for %s\n",argv[1]);
    exit(0);
    }

    if( connect(sockfd, (struct sockaddr*)&servaddr, sizeof(servaddr)) < 0){
    printf("connect error: %s(errno: %d)\n",strerror(errno),errno);
    exit(0);
    }

    printf("send msg to server: \n");
    fgets(sendline, 4096, stdin);
    if( send(sockfd, sendline, strlen(sendline), 0) < 0)
    {
    printf("send msg error: %s(errno: %d)\n", strerror(errno), errno);
    exit(0);
    }

    close(sockfd);
    exit(0);
}

    当然上面的代码很简单,也有很多缺点,这就只是简单的演示socket的基本函数使用。 其实不管有多复杂的网络程序,都使用的这些基本函数。上面的服务器使用的是迭代模式的,即只有处理完一个 客户端请求才会去处理下一个客户端的请求,这样的服务器处理能力是很弱的,现实中的服务器都需要有并发处理能力! 为了需要并发处理,服务器需要fork()一个新的进程或者线程去处理请求等。

动动手

    留下一个问题,欢迎大家回帖回答!!!是否熟悉Linux下网络编程?如熟悉,编写如下程序完成如下功能:

文档信息
--------------
* 版权声明:自由转载-非商用
* 转载: [Markdown简明教程]

Linux Socket编程(不限Linux)